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Abstract
The scaling function for compact directed percolation on a square lattice is
investigated for the asymmetric case where two parameters control the critical
behaviour. A simple representation for the area–perimeter generating function
for staircase polygons is found, which can be recast as a non-linear functional
equation. From this, the exact scaling function is extracted. In the process,
the most concise derivations to date are given for the exact low order cluster
moments.

PACS numbers: 02.50.−r, 05.50.+q, 64.60.Cn

Compact directed percolation (CDP) on a square lattice is an exactly solved problem in the
sense that the low order cluster moments are known explicitly [1, 2]. This letter is concerned
with finding the exact scaling function that determines the asymptotic behaviour of these
moments, using techniques that might also be applicable to more difficult (as yet unsolved)
problems [3–6]. In particular, it is shown how to handle the full, asymmetric case, which
has the specific technical feature that two parameters rather than one control the critical
behaviour. To make progress, a mapping between CDP clusters and staircase polygons is
utilized. First, a particularly simple continued fraction representation for the area–perimeter
generating function of staircase polygons is derived. This is then re-written as a non-linear
functional equation, from which exact expressions for the mean cluster perimeter length,width,
height and area (number of occupied sites) are obtained almost trivially, the simplest such
derivations known. Second, the asymptotic (scaling) behaviour of the generating function is
extracted directly from the functional equation. This exact scaling function correctly predicts
the divergence of the cluster moments at every point along a critical line in the relevant
parameter space.

The correspondence between CDP clusters and staircase polygons is well known [7, 8],
so it suffices to summarize the key ideas (figure 1). Let G(x, y, z) be the area–perimeter
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Figure 1. A typical CDP cluster with 27 occupied sites (circles), together with its associated
staircase polygon (solid line). The perimeter length is 30, the width is 8 and the height is 7.
The activity of this particular polygon is x16 y14 z27; the probabilistic weight of the cluster is
p1

7 p2
6 q1

7 q2
8 = ( p1q2)8 ( p2q1)7/p1p2.

generating function for such polygons, where x and y are the horizontal and vertical perimeter
activities, and z is the area activity. This function is singular in the twin limits x + y → 1−

and z → 1− [7, 9], and this governs the nature of the phase transition in CDP. Usually, the
analysis is restricted to the symmetric case, x = y, but no such restriction is made here. If the
CDP (boundary site) occupation probabilities are p1 and p2, the cluster moments of interest
are given in terms of G(x, y, z) by

Q = 1

p1p2
G| x=√

p1q2,y=√
p2q1

z=1
(1)

L = Q−1

p1p2

(
x

∂G

∂x
+ y

∂G

∂y

)∣∣∣∣ x=√
p1q2,y=√

p2q1
z=1

(2)

S = Q−1

p1p2

(
∂G

∂z

)∣∣∣∣ x=√
p1q2,y=√

p2q1
z=1

. (3)

Here, Q is the probability that a given cluster is finite, L and S are the mean cluster perimeter
length and area respectively (given that the clusters are finite), and q1 = 1 − p1 and
q2 = 1 − p2. It is assumed that the initial site is occupied with probability 1. Interpreting
(2), L ≡ 2W + 2Hwith W, H denoting the mean cluster width, height (see figure 1). These
expressions are valid either side of the transition.

Several different methods for finding G(x, y, z) are known, leading to quite distinct
representations [3, 10–12]. The derivation below, apparently new, is simple and concise.
Begin by noting that the number of squares (sites) within the polygon (cluster) which lie on
a given diagonal can only stay the same, or increase or decrease by one, as one moves to
an adjacent diagonal (see figure 1). Consider, therefore, a sequence of generating functions
gn(x, y, z) obeying the following recursion relation,

gn = xyzn−1gn−1 + (x2 + y2)zngn + xyzn+1gn+1 (4)

where g0 ≡ 1. The function gn generates (a diagonal line at a time) partial staircase structures
seeded from (but excluding) an initial diagonal line of n sites. Staircase polygons are seeded
from a single site such that G(x, y, z) = xyzg1, as may be verified by direct iteration. When
z = 1, (4) is trivial to solve. When z �= 1, the key step is to recognize a subtle simplification.
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Define Kn ≡ zgn/gn−1 (so that G(x, y, z) = xyK1, since g0 ≡ 1). After some straightforward
algebra, it follows that

Kn = xyzn

1 − (x2 + y2)zn − xyznKn+1
. (5)

This is the basis of an elegant continued fraction representation for G(x, y, z),

G(x, y, z) = x2y2z

1 − (x2 + y2)z − x2y2z3

1−(x2+y2)z2− x2y2z5

1−(x2 +y2 )z3− x2y2z7
...

. (6)

Setting x = y and expanding provides an efficient method for enumerating clusters by perimeter
and area. Upon close inspection, it is apparent that (6) may also be written as follows,

G(x, y, z) = x2y2z

1 − (x2 + y2)z − G(x
√

z, y
√

z, z)

and this can be rearranged to give

G(x, y, z) = x2y2z + (x2 + y2)zG(x, y, z) + G(x, y, z)G(x
√

z, y
√

z, z). (7)

This result is stated in [6] (for x = y) with the comment that it can be obtained from a result due
to Prellberg and Brak [3] after appropriate ‘symmetrization’. The derivation here represents a
‘cleaner’ approach. In words, (7) states that every staircase polygon is either a single square,
or a single square followed by a staircase polygon, or a staircase polygon ‘dressed’ by a
class of simply related polygon. The ‘diagonal’ perspective used to derive (7) is the essence
of Essam’s original treatment [1] of CDP, based on links with the Domany–Kinzel cellular
automaton [2]. However, Essam did not solve for G(x, y, z), choosing instead to evaluate the
moments by directly manipulating a linear recursion akin to (4).

The exact moments (1)–(3) can now be obtained almost trivially from (5) or from (7),
depending upon taste. The conciseness of the derivations makes this worth demonstrating.
Setting z = 1 in (7) provides an algebraic (quadratic) equation for the perimeter generating
function whose solution is

G(x, y, 1) = 1 − (x2 + y2) −
√

(1 − (x2 + y2))2 − 4x2y2

2
. (8)

This is singular when x + y = 1 or, equivalently, when p1 + p2 = 1. It follows that
Q(p1 + p2 < 1) = 1 and

Q(p1 + p2 > 1) = q1q2

p1p2
< 1. (9)

Considering instead the probability P∞ ≡ 1 −Q that a given cluster is infinite, it then follows
that P∞(p1 + p2 < 1) = 0 and

P∞(p1 + p2 > 1) = p1 + p2 − 1

p1p2
> 0.

The line p1 + p2 = 1 thus marks the critical boundary, at each point of which the critical
exponents are the same [1]. For p1 + p2 < 1,

L = 2 +
2

(1 − (p1 + p2))
(10)

which diverges with exponent 1. Similarly, W = (1 − p2)/(1 − (p1 + p2)) and H =
(1 − p1)/(1 − (p1 + p2)), with L = 2(W + H); these results for W and H appear to be
new. The results for p1 + p2 > 1 are obtained via the interchange p1 → q1 and p2 → q2,
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a duality that was explained in [1]. Evaluating S is equally straightforward. Differentiating
the (implicit) functional equation (7) with respect to z and rearranging gives, for p1 + p2 < 1,

S = 1 − (p1 + p2) + p1p2

(1 − (p1 + p2))2
(11)

which diverges with exponent 2. Note that, for this special problem, S = W × H . As an
alternative method of derivation, starting from (5) a recursion for K ′

n ≡ ∂Kn/∂z|z=1 can be
derived, namely,

xyK ′
n = K2(n + xyK ′

n+1)

where K ≡ Kn(x, y, 1) is independent of n. It is easy to solve for xyK ′
1 by iteration,

whereupon it follows that

S = 1

p1p2

K2

(1 − K2)2

∣∣∣∣
x=√

p1q2,y=√
p2q1

.

Since K = (p1p2/q1q2)
1/2, this reduces to (11). This method of derivation is instructive as

it highlights (mathematically) the origin of the divergence. The result for p1 + p2 > 1 is
obtained by duality. All the above results are exact.

Turning back now to the main theme, general scaling arguments [7, 9] suggest that for
x, y �= 0 in the limit x + y → 1− and ε ≡ (1 − z) → 0+,

G(x, y, z) ∼ 1 − (x2 + y2)

2
+ εθF

(
1 − (x + y)

εϕ

)
(12)

where F(t) is a scaling function to be identified. Prellberg [9] studied a q-series representation
for G(x, y, z) and was able to extract (in a difficult and sophisticated analysis) the asymptotic
behaviour in the limit ε → 0 (0 < x, y < 1). Upon the taking the additional limit x + y → 1
the validity of (12) was established and the scaling function found explicitly. The question
of generic interest, however, is whether F(t) can be extracted directly from the defining
functional equation for G(x, y, z) [3–6]. For the symmetric case x = y the answer is known
to be yes (the reader is referred to [5, 6] for details). In extending this work to the more
complicated, asymmetric case a number of subtle technical issues have to be faced.

Define a scaling variable t = (1−(x+y))ε−ϕ, so that the ‘critical’ variable x+y = 1−tεϕ .
The limits x + y → 1− and ε → 0+ are taken with t fixed, and in the following specific sense.
Consider a rotated ‘co-ordinate’ system by introducing the orthogonal variables v = (x+y)/

√
2

and u = (x − y)/
√

2. The limit x + y → 1 corresponds to v → 1/
√

2. The choice is made
to take this limit with u (i.e. x − y) fixed (see the later comment). Using the (x, y) ⇔ (v, u)

transformation as a guide, the following quantities appearing in (7) have the ‘natural’ form:

x2y2 ≡ 1
4 [v2 − u2]2 = 1

16 [(1 − tεϕ)2 − (x − y)2]2

x2 + y2 ≡ v2 + u2 = 1
2 [(1 − tεϕ)2 + (x − y)2].

A differential equation forF(t) is now obtained by expanding (7) in powers of ε and retaining
the lowest order, non-trivial terms; the so-called method of dominant balance [5, 6]. A key
observation is that

εθF

(
1 − (x + y)

√
1 − ε

εϕ

)
∼ εθF (t) +

1

2
ε1+θ−ϕ dF(t)

dt
.

A non-trivial expression for F(t) is obtained only if the crossover exponents θ = 1/3 and
ϕ = 2/3, whereupon equating powers of ε2/3,

F(t)2 +
(1 − (x − y)2)

8

dF(t)

dt
− (1 − (x − y)2)

2
t = 0. (13)
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The solution of this non-linear (Ricatti) equation is (cf the results in [6]),

F(t) = (1 − (x − y)2)

8

d

dt
ln Ai

(
25/3

(1 − (x − y)2)1/3
t

)
(14)

where Ai (t) is the Airy function. This is the exact scaling function. It is in agreement with the
more general result obtained in [9] in the appropriate limit. In fact, the result in [9] suggests
that one can relax the way the limit x + y → 1 is taken to derive (14). Exactly how to carry
this out in practice, however, is not clear.

The asymptotic behaviour of the low order moments can be determined from (14). Using
standard properties of Airy functions, as t → ∞

F(t) ∼ − [1 − (x − y)2]1/2t1/2

√
2

− [1 − (x − y)2]

32t
.

The limit x + y → 1− implies p1 + p2 → 1 in the sense of

1 − (x + y) ∼ (1 − (p1 + p2))
2/8p1p2

and x − y ∼ p1 − p2. Using these results, e.g. for p1 + p2 → 1−, gives

L ∼ 2

1 − (p1 + p2)
W ∼ p1

1 − (p1 + p2)
H ∼ p2

1 − (p1 + p2)

S ∼ p1p2

(1 − (p1 + p2))2
S ∼ W × H.

These are correct along the critical line (cf the exact results with p1 + p2 ∼ 1). The recovery
of the correct amplitudes is a significant check on the validity of (14).

In conclusion, the exact scaling function governing the phase transition in asymmetric
compact directed percolation has been obtained directly from a non-linear functional equation
for the staircase polygon generating function. A new derivation has been provided for the
latter and, in passing, very concise derivations have been given for the exact low order cluster
moments.
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